

Virginia Information Technologies Agency

ISOAG Meeting February 7, 2018

Welcome to CESC

Virginia Information Technologies Agency

Welcome and Opening Remarks

Michael Watson

February 7, 2018

Virginia Information Technologies Agency

ISOAG February 7, 2018

Welcome & Opening Remarks

Mike Watson, VITA.

II. Cybersecurity Risk for Automated Vehicles in the Commonwealth

Kevin Heaslip, VT

III. COV Security Requirements 101

Joy Young, VITA

IV. Upcoming Events

Mike Watson, VITA

V. Operations Update

NG

Potential Cybersecurity Risks for Automated Vehicles in the Commonwealth of Virginia

Presentation to VITA February 7, 2018

Dr. Kevin Heaslip
Associate Director
Electronic Systems Lab

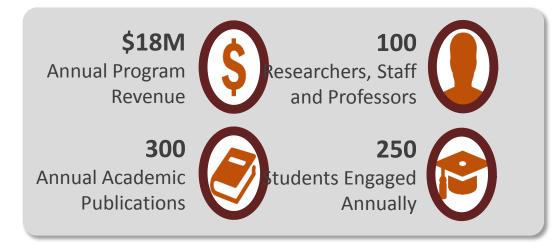
hume@vt.edu www.hume.vt.edu

Defense and Security @ Virginia Tech

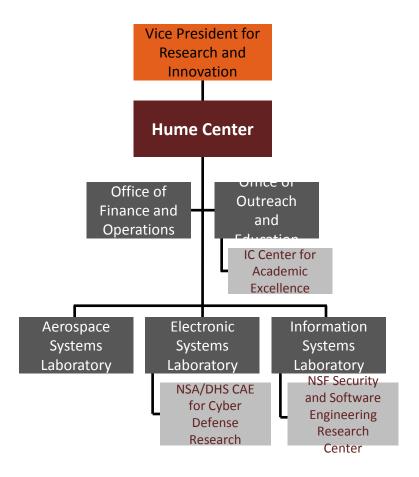
Tech National Security Enterprise

ne Center for National Virginia Tech Applied curity and TechnologyResearch Corporation

ense Workforce Development Collaborative Innovation Advanced ResearTechnology Domain Awareness Breakthrough Technologies Applied R&D


University Center 6.1 through 6.3

Integrated 501(c)3 6.2 through 6.4



NSA/DHS Center for Academic Excellence IC Center for Academic Excellence CyberCorps Scholarship for Service Site

Hume Center Organization and Leadership

Charles Clancy
Director
ECE

Mark Goodwin
Deputy Director

Bob McGwier Chief Scientist ECE, AOE

Christie
Thompson
Director of
Finance and
Operations

Christine
Callsen
Director of
Outreach and
Education
Kira Gantt

Education
Kira Gantt
Associate
Director of
Outreach and
Education

Jon Black
Director,
Aerospace
Systems Lab

Alan Michaels
Director,
Electronic
Systems Lab

Kevin HeaslipAssociate Director,
Electronic Systems
Lab

CEE

Academic Appointments

AOE Aerospace and Ocean Engineering
CEE Civil and Environmental Engineering
ECE Electrical and Computer Engineering

g National
Departm Centers

Operaum

Hume Center Program Summary

Outreach & Education Electronic Systems

Electronic Systems Lab

Information Systems
Lab

National- and Cyber-Security Curriculum

Assured Communications

Space Situational Awareness

Embedded
System Security

Extracurricular Programs

Radar and Spectrum

Unmanned Platforms

Secure and Resilie Infrastructure

Student Career Mentorship

Electronic and Cyber Warfare

Autonomy & Mission Orchestration

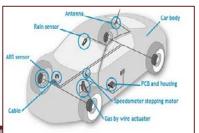
Applied Deep Learning

Experiential Learning

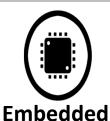
Counter A2AD

Cubesats and Small Satellites

Security and Privator IoT


2/7/2018

Focus Area: Cyber-Physical System Security


CIKR SecuritySafety-Critical Systems IOT Privacy

Research Areas

ess Cloud

Embedded

- RTOS Access Control
- Physically Unclonable Functions
- Embedded RNG
- AES Sidechannel
 Attacks
- Whitelist firewall for SCADA transactions

Wireless

- LTE Jamming
- LTE/EPC Security
- Android Security
- Software Radio Exploitation
- Mobile Key
 Management

Transportati on

- Key FOB Security
- Vulnerability
 Assessments
- V2X Security
- ADS-B Encryption
- UAV C2 Attacks
- Navv

Airworthiness

Energy

- MODBUS Encryption
- Smartgrid
 Security
 (Transmission
 and Distribution)
- Nuclear Reactor Control Systems

Automotive Security Team

Dr. Kevin HeaslipAssociate Director,
Electronic Systems
Lab

- Intelligent Transport
- Vehicle Operations
- Transport Cybersecurity

Dr. Alan MichaelsDirector of Research
Electronic Systems

Research Areas:

- Digital Communications
- Satellite Communications
- LPI/LPD
- Digital chaos

Dr. William C. Headley
Senior Research Associate

Research Areas:

- Signal Detection
- Signal Classification
- Digital Signal Processing

Dr. Ryan GerdesAffiliated Faculty
Electrical and Computer Engineer

Research Areas:

- Signal and data authentication
- Hardware and device securit
- Computer and network secur
- Transportation Security

Michael Fowler
Senior Research Asso

Research Areas:

- Cyber electronic warfare
- Wireless security
- Communications

Kevin SterneResearch Associate

Research Areas:

- RF Engineering
- Radar
- Wireless communications

Zach LeffkeResearch Associate
Aerospace Systems

Research Areas:

- Wireless signal processing
- Software radio
- Satellite communications

Dr. Joseph M. ErnstResearch Assistant Pro

Research Areas:

- · Statistical signal processing
 - Cyber-physical systems secur
- Intelligent Transportation Sys
- Secure Communications

2/7/2018

Introduction

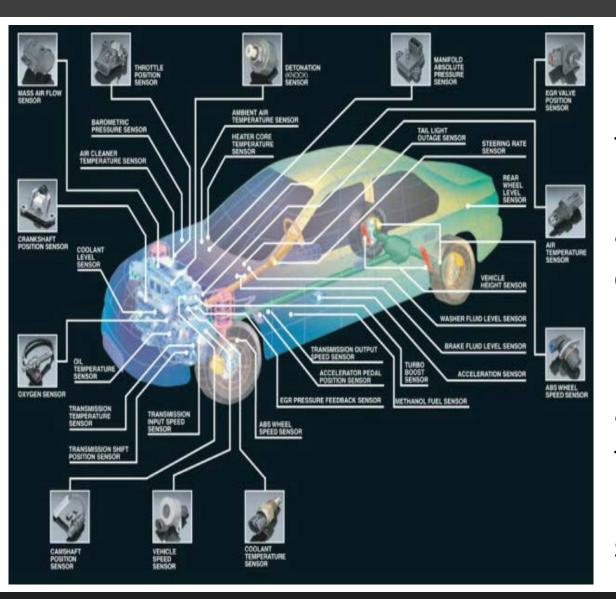
Over time technology has become integral to the automobile.

• If you do not like computers in your car, a great car for you to

have is:

1975 Ford Granada

Computerization of the Automobile


- Emissions standards and the 1970's fuel crisis made the computerization of automobiles necessary
- Efficiency, not brute force power, was the reasoning for adding microchips to the car.
- Sensors and microchips are the heart of the automobile now.
 - Average of 60 to 100 sensors aboard
 - Automated vehicles should double to triple the amount of sensors aboard

 The typical new car comes with more than 100 million lines of code

2/7/2018

Computers in the Car

"A cyber incident is not a problem just for the automaker involved," Barra said at an industry conference held in Detroit. "It is a problem for every automaker around the world. It is a matter of public safety."

Definitions

- Autonomous
- "acting independently or having the freedom to do so"

- Automated
- "convert (a process or facility) to largely automatic operation"
 - Automated Driving

The Vehicle of Tomorrow

 Alan Taub of General Motors stated at the 2011 ITS World Congress that the vehicle of tomorrow will be:

Autonomous (Automa

- Connected
- Electric

Driver Automation Levels

Five Levels of Vehicle Autonomy

Level 0

No automation: the driver is in complete control of the vehicle at all times.

Level 1

Driver

auidance.

assistance: the vehicle can assist the driver or take control of either the vehicle's speed, through cruise control, or its lane position, through lane

Level 2 Occasional

self-driving:
the vehicle can take
control of both the
vehicle's speed and
lane position in
some situations, for
example on
limited-access
freeways.

Level 3

Limited

self-driving:
the vehicle is in
full control in
some situations,
monitors the road
and traffic, and
will inform the
driver when he or
she must take
control.

Level 4 Full self-driving

under certain

conditions:
the vehicle is in
full control for the
entire trip in
these conditions,
such as urban
ride-sharing.

Level 5 Full self-driving


under all conditions: the vehicle can operate without a human driver or occupants.

Source: SAE & NHTSA

Automated Driving in Action

Google's Self Driving Car

Different Automated Vehicles

Automated Vehicles

Automation Available Today

- Adaptive Cruise Control
- Lane Keeping
- Jam Assist
- AutoPilot

Tesla AutoPilot

2/7/2018

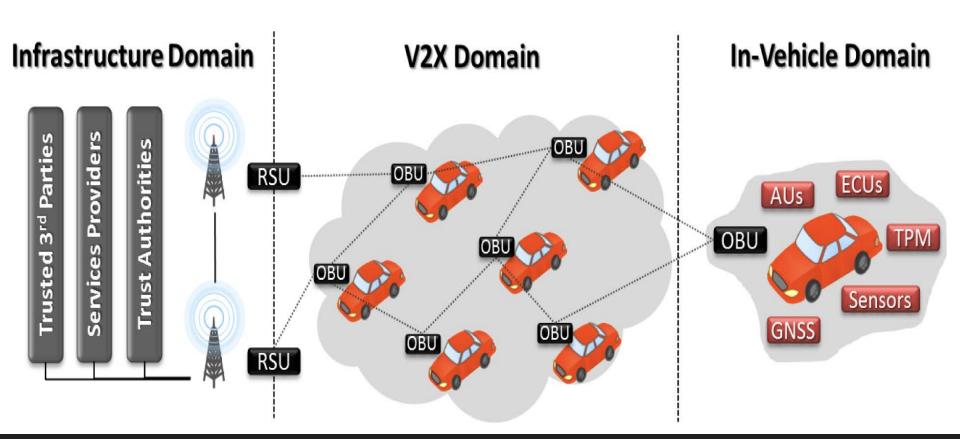
Use of Machine Vision

2/7/2018

Automation Benefits/Challenges

- Benefits
 - Significantly Less Crashes Possible
 - Increased Capacity Possible
 - Platooning
 - Reduced Lane Width
 - More Ridesharing / Less Vehicles
- Challenges
 - Liability Issues
 - Cybersecurity

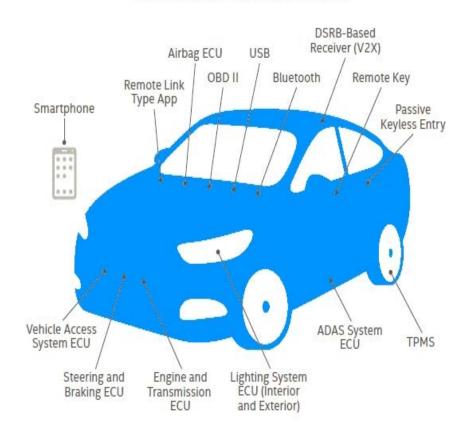
Intelligent Transportation Infrastructure


- Traditional Intelligent Transportation Systems have been shown to be vulnerable.
 - Traffic Signals
 - Variable Message Signs
 - Electronic Toll Collection
 - GPS Navigation
 - Vehicle to Infrastructure Communication
 - Road Weather Information Systems
 - Weigh-In-Motion Systems
 - Traffic Operating Center Communications

Communications Domains in Surface Transportation

- Each domain requires security to ensure safety and efficiency of the transportation system
- Integrated infrastructure and vehicle security is needed

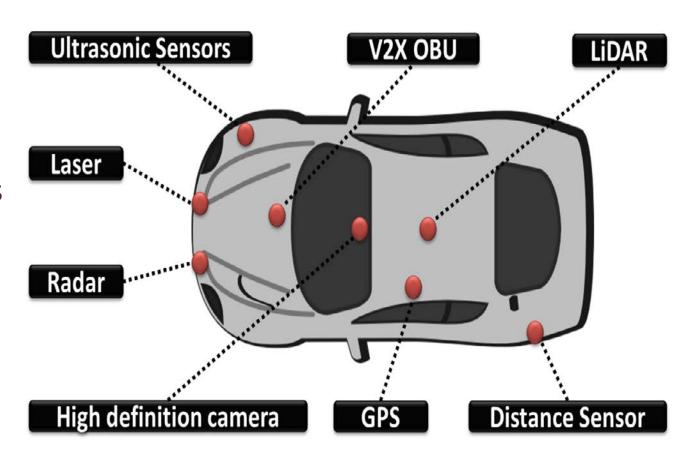
2/7/2018


Potential Traditional Vehicle Vulnerabilities

Vulnerabilities Include:

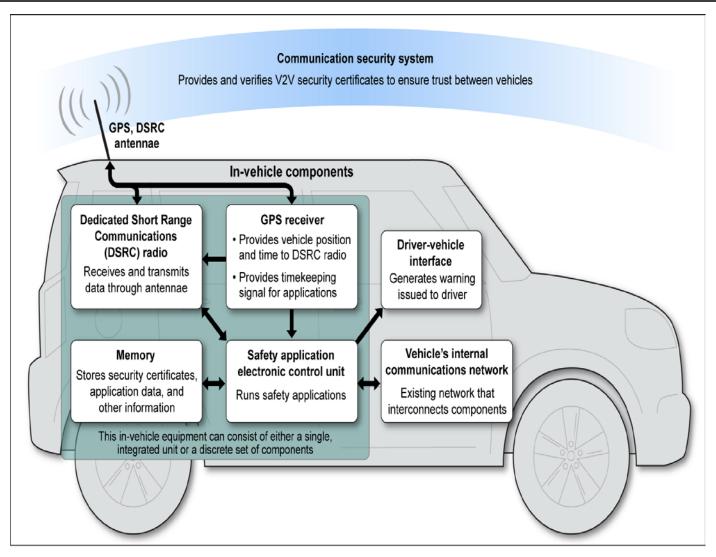
- On-Board Diagnostic Security
- Tire Pressure Monitor Security
- Key Fob Security
- Infotainment Security

Automobile Attack Surfaces



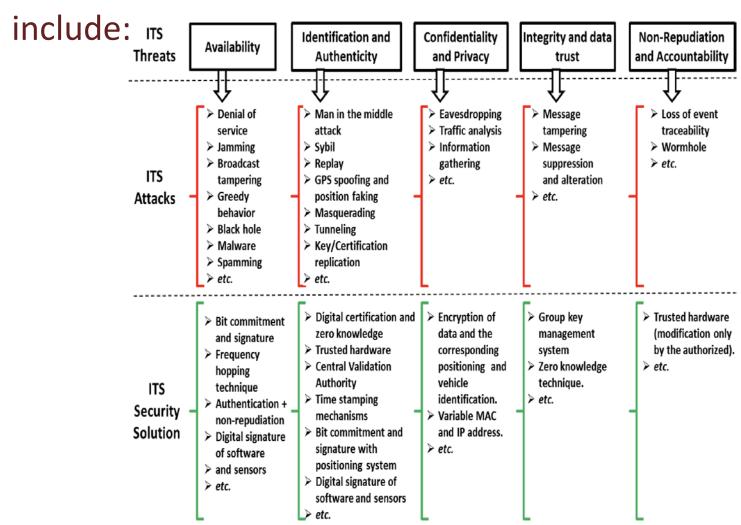
2/7/2018

Advanced Vehicle Communication and Sensing



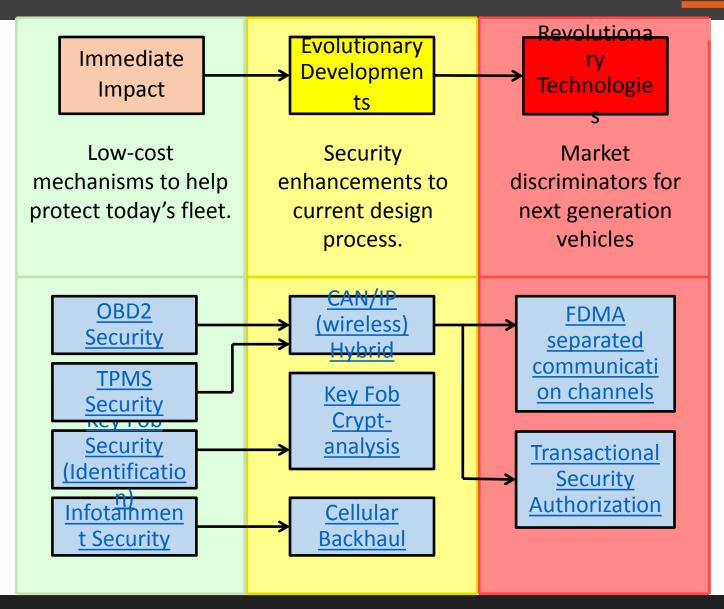
- Communication systems and sensing systems add attack vectors that have not been seen in previous iterations of vehicles.
- These technologies enable efficiencies and create vulnerabilities.

Attacks possible on next generation vehicles



Sources: Crash Avoidance Metrics Partnership and GAO.

Threats to ITS and Vehicle Systems

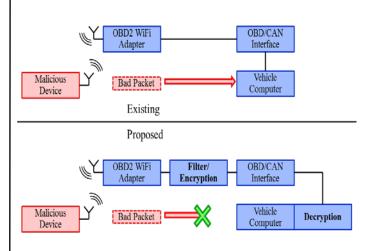


Additional solutions

Hume Center Vehicular Cyber-Security

On-Board Diagnostic (OBD2) Security

Description


This project will develop a hardware OBD2 interface which would provide additional security while maintaining access required by the "right to repair" law. This cannot simply be an interface which would plug in to the existing system, but must also prevent bypassing of the OBD2 port.

Objective

- Design OBD2 hardware filter
- Design OBD2 CAN encryption
- Design decryption utility for vehicle computer
- Implement proof of concept

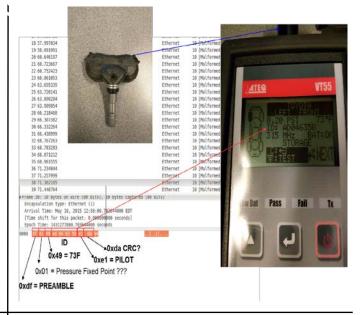
Payoff

- Address undesired cyber OBD2 vulnerability
- Prevent spoofed messages on CAN bus delivered to OBD2 port
- Additional layer to prevent buffer overflow type attacks
- Software/Firmware update solution

- 1. Monthly Technical reports
- 2. Quarterly Technical Exchanges
- 3. Final Report
- 4. Hardware demonstration of OBD2 filter system

Tire Pressure Monitoring System

Description


This project will develop a GNU Radio implementation of the Tire Pressure Monitoring System (TPMS) RF signals. It will use low cost software defined radios. The project will begin by developing an algorithm to spoof TPMS signals and will continue by analyzing the extent to which the CAN bus can be affected through the TPMS threat surface.

Objective

- Develop TPMS demodulator
- Develop TPMS transmitter
- Show feasibility of TPMS spoofing
- Design recommendations for robustness to spoofing
- Investigate to what extent the CAN bus is accessible through the TPMS wireless threat surface

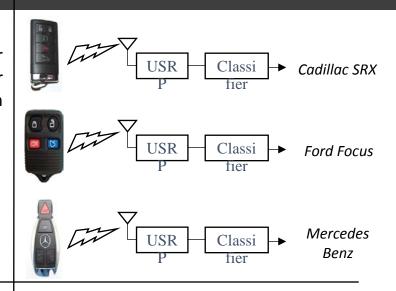
Payoff

- Low cost TPMS testbed
- Design recommendations for robust TPMS receiver
- Threat assessment of TPMS->CAN lateral threat vector

- 1. Monthly Technical reports
- 2. Quarterly Technical Exchanges
- 3. Final Report
- 4. Hardware demonstration of TPMS spoofing

Automotive Key Fob Signal Identification

Description


Our initial testing has indicated that different car manufacturers' key fobs have slight differences in their signaling that could be used to identify the key fob when visual cues are not available.

Objective

- Characterize the signaling formats of car key fobs based on make, model, year, and/or country.
- Develop a classification approach to identify a key fob's make, model, year, and/or country from signal captures.

Payoff

- Will determine if a car's key fob can be classified based on its signaling format alone (without using visual cues based on its form factor).
 - Potential Vulnerability: an attacker could find a target's car quicker based on measured responses from the target's key fob.
 - Potential Commercial Application: a car dealer could scan a potential buyer's key fobs and steer their interactions appropriately.
- Provide suggestions to improve key fob security based

- 1. Report on the survey of key fob signal characteristics by car make, model, year, and/or country.
- Classification software used to classify a key fob's make, model, year, and/or country from signal captures.
- Demonstration of any developed algorithms as well as a report outlining potential improvements to key fob security.

Infotainment Vulnerabilities

Description

White hat hackers have recently demonstrated the ability to control different components of a vehicle by injecting malware into its infotainment system.

Objective

- Survey the possible user interfaces to the infotainment system on a vehicle and determine possible vulnerabilities
- Determine the impact of a compromised system to the occupants
- Develop mitigation techniques, like intrusion detection and isolation, to secure the interfaces into the infotainment center.

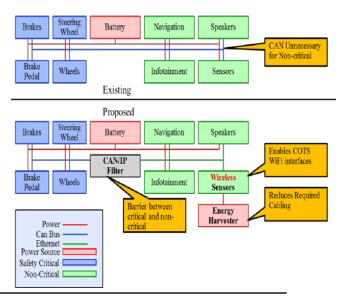
Payoff

- Determine possible attack vectors that can be used to compromise the security of the infotainment center in a vehicle.
- Determine how a compromised system can negatively affect the driver.
- Determine mitigation strategies to detect attacks, block attacks and reset the system if it is compromised.
- Infotainment system isolated from critical systems.

- 1. Vulnerability analysis of the infotainment center and any interfaces available to the customer
- 2. Mitigation techniques and overall strategy to secure the interfaces from outside attack.

CAN/IP (wireless) Hybrid

Description


The current communications for today's automobiles are all connected through the CAN bus. Some have suggested replacing the CAN bus with Ethernet and an IP protocol, but this is unlikely to provide the low latency required for safety critical systems. This project will develop a hybrid system of CAN and IP (Ethernet and Wireless) connected devices.

Objective

- Design and implement proof of concept CAN/IP hybrid system
- Show feasibility of wireless sensors with energy harvesting
- Show cyber resilience enabled by CAN/IP filter

<u>Payoff</u>

- Separate safety critical systems from non-critical
- Reduction in cost of non-critical systems
- Easy interfacing with existing IP devices
- Reduction in cabling to wireless sensors

- 1. Monthly Technical report
- 2. Final Report
- 3. Hardware demonstration of CAN/IP(wireless) system

Automotive Key Fob Cryptanalysis

Description

 Many car manufacturers utilize rolling-codes for their key fobs, which change the encryption of the data transmitted between the key fob and the car each time an action is performed.

Objective

- Utilize cryptanalysis algorithms to determine how susceptible a car's rolling codes are to attack.
- Based on the results of these algorithms, provide insight on how to improve the security of these rolling codes.

<u>Payoff</u>

- Will determine how vulnerable key fob's rolling codes are as a function of make, model, and/or year.
 - Potential Vulnerability: an attacker could eavesdrop on a target's key fob and use cryptanalysis approaches to gain access to the car at will or spoof the key fob.
- Provide potential suggestions to improve a car's rolling code from a cryptanalysis perspective based on the results of this work.

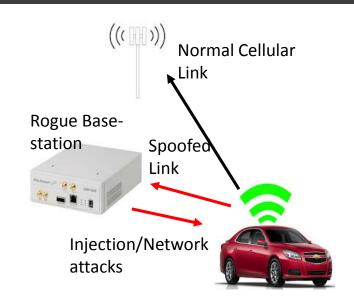
Preamble Encrypted Data (using a rolling code)

Key Fob's UHD Response given a Door Unlock Button Press

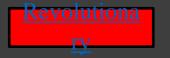
- 1. Report on the survey of the characteristics of car rolling codes as a function of make, model, and/or year.
- 2. Cryptanalysis software that can be used to attack a car's rolling code.
- 3. Demonstration of any developed algorithms as well as a report outlining potential improvements to key fob security based on the outcome of the work.

Cellular Backhaul Threat Surface Analysis

Description


Many manufactures include cellular backhaul links in their vehicles to provide the connectivity required for systems such as OnStar. There is a possibility of these systems connecting to rogue base stations and those links being used to compromise the system.

Objective

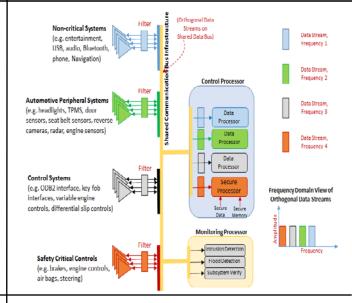

- Determine the feasibility of hijacking the cellular communication link with a spoofing attack against the vehicle using a software defined rogue base station
- Vulnerability analysis of the embedded system supporting remote access. Run a penetration test on the component's operating system.

Payoff

- Determine the feasibility of hijacking the cellular link with a spoofing attack
- Vulnerability analysis of the interface between the vehicle's subsystems and the backhaul
- Determine the level of access to critical systems if the cellular system can be compromised.
- Proposed solutions to firewall the cellular interface

- 1. Vulnerability analysis of the components providing the cellular backhaul connection for the vehicle
- 2. Solutions to secure vehicle against rogue base-station attacks and techniques to isolate critical components.

Frequency Channelized CAN Bus


Description

Many automotive hacks exploit the shared messaging structure of the CAN bus, yet many security measures have the potential to add unacceptable latency or design complexity. Transitioning the CAN bus to a frequency channelized bus where each channel has a specific security level (similar to multi-level secure DoD systems) enables robust new security mechanisms without latency or complexity impacts. (VT patering)

- Validate concept for a channelized CAN bus in a lab environment and perform targeted validation on a live vehicle (year 1).
- Demonstrate improvements against known hack attempts on a live vehicle and develop a system-wide framework to quantify security levels, costs, and benefits (year 2).

Payoff

 Transitioning to a multi-level secure messaging architecture in automotive systems offers significant improvements to the robustness of the core infrastructure. It also reduces the risk of integrating emerging technologies into vehicular systems, since impacts on life-critical systems are prevented by design.

- 1. Monthly Technical reports
- 2. Year 1 Interim Summary Report
- Simulation and hardware demonstrations to show proof of concept (~quarterly)
- 4. Final Report

Transactional Security Authorization

<u>Description</u>

Cyrptosystems often concentrate on ensuring confidentiality, integrity, authentication, authorization, and nonrepudiation but cyber physical systems also have the necessity of understanding the context of a request. Transactional security takes into account the context of a request and applies acceptance/rejection based upon the situation.

Objective

The goal is to develop transactional security authorization into real-time serial communications of vehicular cyber physical systems without compromising real-time operation and with minimal impact to data overhead and computational resources.

<u>Payoff</u>

- Improve security posture of cyber physical systems using authorization mechanisms well-suited for realtime embedded serial communications that are not Enterprise IT Security wrappers.
- Adds context-ware security mechanisms that prevent authorized behavior during unauthorized situations.
- Establishment of an IEEE and/or RFC standard for industry wide adaptation and plug-and-play.

Deliverables

- 1. Monthly Technical report
- 2. Transactional Security Simulation & Algorithms (Yr. 1)
- 3. Transactional Security Laboratory Evaluation (Yr. 2)
- 4. Final Report consisting of an RFC/IEEE Standard Document for submittal for industry review and acceptance

Any Questions?

Thank you for your time

Kevin Heaslip
 Associate Professor
 Virginia Tech
 kheaslip@vt.edu
 540-231-2362

COV Security Requirements 101

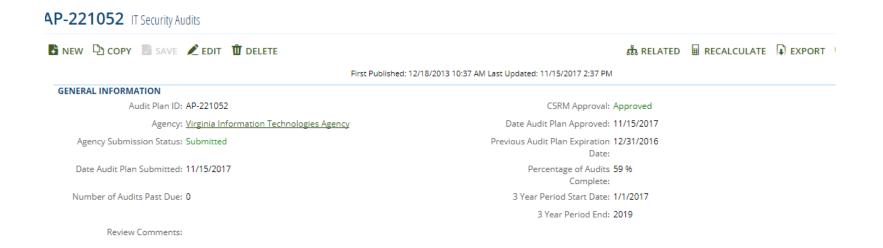
Joy Young
Information Assurance Analyst

Agenda

- IT Security Audit Plans
- IT Security Audit Reports
- Corrective Action Plans/Quarterly **Updates**
- Business Impact Analysis
- Risk Assessment Plans
- Risk Assessments

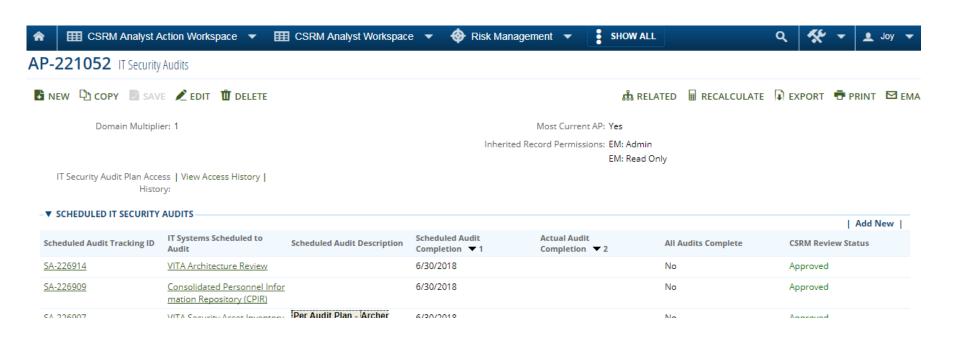
IT Security Audit Plan

- Submitted annually
- Approved by Agency Head
- Should be based on the BIA
- Include all **sensitive** applications
- Sensitive applications must have completed/planned audits at least once every 3 years


TIP: Application names on the plan should agree with the application names in Archer

IT Security Audit Plan

IT security audit plan can be added in Archer



IT Security Audit Plan

Scheduled audits can be added in Archer

IT Security Audit Plan

ate of ubmission	
gency Information	on
gency Name	
gency Acronym	
gency Number	

Contact Information					
Name					
Title					
E-mail					
Phone					

IT System Acronym *	IT System Name	Planned Auditor	Date Last Audited (MM/YY)	Scheduled Audit Completion Date (Minimum once every 3 years)			Areas for Special Emphasis and Additional Audit	
				20xx (MM/YY)	20xx (MM/YY)	20xx (MM/YY)	Requirements	

IT Security Audit Report

- Follow GAGAS Yellow Book or IIA Red **Book Standards**
- Submit audit report to Commonwealth Security
- Followed by a corrective action plan

Tip: The audit standard that was used should be stated clearly in the audit report

Corrective Action Plans/Quarterly Updates

- Submitted within 30 days of issuing the final audit report
- Updated corrective action plan must be submitted quarterly until all corrective actions are completed
- Must have evidence of agency head approval

<u>Tip</u>: Make updates in Archer where possible

Corrective Action Plans/Quarterly Updates

Updates to findings can now be made in Archer

Corrective Action Plans/Quarterly Updates

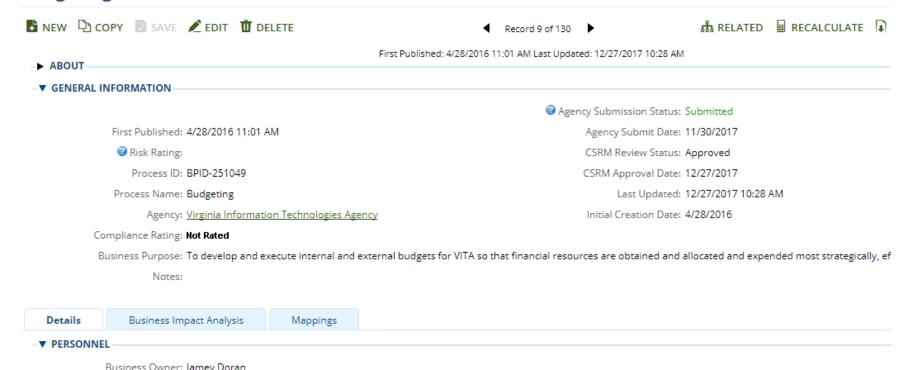
Template

Corrective Action Plan and IT Security Audit Quarterly Summary Template

PURPOSE: This Plan describes IT Security Audit findings; documents responsibility for addressing the findings; and describes progress towards addressing the findings. Provide enough information to enable the reader to understand the nature of the finding, the impacts, and the planned remedy.

Submission Date:						
Audit Name:						
IT System Names(s)						
Audit Finding Number	SEC501 Control Number	Summary	Agency Concurs ¹	Planned Corrective Action or Mitigating Controls ²	Responsible Person(s)	Status ³

BIA


- Every application must be associated with a business process
- Include required information

BIA

Budgeting Business Processes

BIA

Business Impact Analysis Mappings Details **▼ BUSINESS IMPACT ANALYSIS** Operational Impact Description: Impact to Confidentiality: Impact to Finances: Impact to Customer Service: Impact to Life: Impact to Safety: Regulatory Impact: Recovery Time Objective: 720 Hours Recovery Point Objective: 720 Hours Legal Impact: 🥔 Manually Performed: No

ATTACHMENTS

BIA

INO RECORDS FOUND

▼ APPLICATIONS

Application ID	Application Name	Agency	Criticality Rating
APPID-205814	Cardinal Interface	Virginia Information Technologies Agency	Θ

Risk Assessment Plan

- Submitted annually
- Include all sensitive applications
- Sensitive applications must have completed/planned audits at least once every 3 years
- Agencies can add RAP and SRA in Archer

TIP: Application names on the plan should agree with the application names in Archer

Risk Assessment Plan

RAP247465 IT Risk Assessment

ஃ RELATED ☐ RE

First Published: 1/27/2016 12:03 PM Last Updated: 12/13/2017 2:22 PM

GENERAL INFORMATION

Risk Assessment Plan ID: RAP247465

Agency: Virginia Information Technologies Agency

Agency Submision Status: Submitted

Date Risk Assessment Plan 10/31/2017

Submitted:

Number of Risk Assessments 0

Past Due:

CSRM Approval: Approved

Date Risk Assessment Plan 10/31/2017

Approved:

Date Risk Assessment Plan 10/31/2018

Expires:

Percentage of Risk 67 %

Assessments Complete:

3 Year Period Start Date: 1/1/2018

3 Year Period End: 2020

Risk Assessment Plan

RAP247465 IT Risk Assessment

☑EVITA ITRISK Asessment Plan opt-out (2).xlsx 12 20 20279 2016.xlsx			.xlsx		8/10/2017 11:23:35 AM		
▼ SCHEDULED RISK ASSESS	MENTS						
Scheduled Risk Assessment Tracking ID	Systems Scheduled for Risk Assessment	Scheduled Risk Assessment Description	Scheduled Risk Assessment Completion ▼1	Actual Risk Assessment Completion ▼ 2	All Risk Assessments Complete	CSRM Review Statu	
5RA247466	Comprehensive Billing - MBA - Direct Bill Mainframe Billing System Consolidated Personnel Information Repository (CPIR) Contact Repository (People System) Peoplesoft Financials zz-Retired: Personnel Action Application (PAA) (retired, not in use) zz-Retired: Sharepoint (VI) (Retired, No Longer in Use)	listed application systems.	12/31/2018		No	Approved	

Risk Assessments

 Should be conducted as needed, but not less than once every 3 years

Risk Assessment

IT System Name	Risk ID	Confidentiality	Integrity	Availability	Risk Assessment Completion Date (MM/YY)	Risk Vulnerability Family (Ref. SEC 501)	SEC 501 Control ID (e.g. AC-1, RA-5, etc)

Thank you

Upcoming Events

Future ISOAG

March 7, 2018 @ CESC 1:00-4:00

Speakers: Tom Arruda, IT Risk Management, Dominion Energy

J. Wesley Kleene, VITA

Bill Freda, VITA

John Craft, VITA

ISOAG meets the 1st Wednesday of each month in 2018

Registration is Now Open

"2018 COVA Information Security Conference: "Expanding Security Knowledge"

April 12 & 13

Location: Altria Theater

https://wm.irisregistration.com/Site/VITA2018

Registration Fee - \$175

*Contact CommonwealthSecurity@vita.virginia.gov for more information

Conference Keynote Speakers

Adam S. Lee,
Special Agent in Charge
Federal Bureau Investigations (FBI)
Richmond (Division) Field Office

Dr. Deanna D. Caputo
Principal Behavioral Psychologist
Human Behavior and Cybersecurity Capability
Steward
The MITRE Corporation

ADJOURN

THANK YOU FOR ATTENDING

